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1 Synopsis

Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand
and scan time directly depends on the number of acquired k-space samples.
Conventional MRI reconstruction methods for fast MRI acquisition mostly relied
on different regularizers which represent analytical models of sparsity. However,
recent data-driven methods based on deep learning has resulted in promising
improvements in image reconstruction algorithms. In this paper, we propose a
deep plug-and-play prior framework for parallel MRI reconstruction problems
which utilize a deep neural network (DNN) as an advanced denoiser within an
iterative method. We demonstrate that a deep plug-and-play prior framework
for parallel MRI reconstruction with a regularization that adapts to the data
itself results in excellent reconstruction accuracy and outperforms the clinical
gold standard GRAPPA method.

2 Introduction

Many approaches for reducing MRI experiments scan time works by acquiring
a fraction of the measurement required for a high-quality image. The plug-and-
play prior framework is proposed by Venkatakrishnan et al. [1] with an idea to
utilize the denoiser without any regularization objective as proximal operator
in an iterative method for image reconstruction. The method has been used in
different imaging inverse problem applications [2, 3, 4, 5]. In [2], authors used
the plug-and-play framework for bright field electron tomography. In [3], plug-
and-play alternating direction method of multipliers (ADMM) has been used for
image restoration applications. In [4], the authors developed the fast-iterative
shrinkage/thresholding algorithm (FISTA) variant of plug-and-play prior for
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model-based nonlinear inverse scattering and proved that the framework is ap-
plicable beyond linear inverse problems. In [5], the authors introduced a scalable
version of plug-and-play framework based on iterative shrinkage/thresholding
algorithm (ISTA) which utilized a subset of measurement at every iteration in
order to parallelize the algorithm. In all the mentioned papers, a fixed denoiser
has been used as the proximal operator which its accuracy can’t be ideal in
different scenarios for different application. However, in this paper we present
a learning-based plug-and-play prior framework for parallel MRI reconstruc-
tion which extends the framework to its data-adaptive variant and provides an
end-to-end reconstruction scheme.

3 Methods

The discretized version of MR imaging model given by

d = Ex + n. (1)

where x is the samples of unknown MR image, and d is the undersampled
k-space data. E = PFS is an encoding matrix, and F is a Fourier matrix. P is
a mask representing k-space undersampling pattern and S = [S1...SL], Sl is a
matrix representing the sensitivity map of the lth coil, 1 ≤ l ≤ L, and L is the
total number of coils. Assuming that the interchannel noise covariance has been
whitened, the reconstruction relies on the regularized least-square approach:

x̂ = argmin
x

‖d− Ex‖22 + βR(x) (2)

where R is a regularization functional that promotes sparsity in the solution
and β > 0 controls the intensity of the regularization.

Our iterative deep plug-and-play prior framework for solving the Equation
(1) is provided in Figure 1. DNN architecture is Unet-type convolutional net-
work [6] and Loss minimization was performed using ADAM [7] optimizer. Zero-
filled reconstruction is used as an initialization to the algorithm. For least-square
cases, we have

prox(d,S, x̃;λ) = argmin
z

1

2
‖z− x̃‖22 +

λ

2
‖PFSz− d‖22 (3)

Since the deep network frameworks work on real-valued parameters, inputs,
and outputs, in our method complex data are divided into real and imaginary
parts and considered as two-channel input and output.

4 Results

In our experiments, we have tested our method with two different datasets. First
dataset has been acquired (3D MPRAGE) on six volunteers with a total of 450
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brain images used as the training set. For the second dataset, we have used one
of the knee datasets (Coronal fat-saturated proton-density (PD)) presented by
[8] which includes a total of 200 images (from central slices) from 10 patients as
the training set. 10 images from different patients for each dataset have used
for testing purposes. The sensitivity maps were computed from a block of size
24x24 for both brain and knee datasets using ESPIRiT [9] method. Full k-space
data reconstructed with the adaptive combine method [10] was used as our gold
standard for comparison. Figure 2 display the impact of acceleration factor
R=2x2 for zero-filled reconstruction, the clinical gold standard GRAPPA, and
our proposed method on 3D MPRAGE brain images. We observed that the
proposed method reconstructs artifact-free images, which have better quality
than GRAPPA reconstruction, and GRAPPA result shows noise amplification
compared to our result (PSNR of ours is 52.93 compared to PSNR of 43.91 for
GRAPPA). Figure 3 shows the impact of acceleration factor R=4 for zero-filled
reconstruction, GRAPPA, and our proposed method on fat-saturated PD knee
data. Similar to Figure 2, GRAPPA result for knee data in Figure 3 shows
noise amplification compared to our result (PSNR of ours is 40.48 compared to
PSNR of 29.39 for GRAPPA). PSNR and SSIM quantitative variations on two
test datasets are depicted in Table 1.

5 Conclusion

This paper proposes a deep plug-and-play prior framework and demonstrates the
effectiveness of learning-based plug-and-play prior framework for parallel MRI
reconstruction and the experimental results on two MRI datasets show that our
proposed method outperforms the clinical gold standard GRAPPA method.

Brain Dataset Knee Dataset
Method PSNR SSIM PSNR SSIM

Proposed 53.3±0.91 0.99±0.0015 39.87±1.08 0.93±0.0086
GRAPPA 44.8±0.69 0.97±0.0023 28.43±0.97 0.6±0.045

Table 1: PSNR and SSIM variations on the two test datasets
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Figure 1: Proposed deep plug-and-play prior framework.
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Figure 2: First row (left to right): Gold standard reconstruction result using
fully sampled data, zero-filled reconstruction, GRAPPA reconstruction result
with undersampling factor of 2x2, and our reconstruction result with under-
sampling factor of 2x2 for 3D MPRAGE data. Second row, includes error maps
correspond to each reconstruction results for comparison.

5



Figure 3: First row (left to right): Gold standard reconstruction result using
fully sampled data, zero-filled reconstruction, GRAPPA reconstruction result
with undersampling factor of 4, and our reconstruction result with undersam-
pling factor of 4 for 2D coronal knee data. Second row, includes error maps
correspond to each reconstruction results for comparison.
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