Loss of White Matter Microstructural Integrity Is Associated with Adverse Neurological Outcome in Tuberous Sclerosis Complex

Jurriaan M. Peters, MD, Mustafa Sahin, MD, PhD, Vanessa K. Vogel-Farley, BSc, Shafali S. Jeste, MD, Charles A. Nelson, III, PhD, Matthew C. Gregas, PhD, Sanjay P. Prabhu, MBBS, Benoit Scherrer, PhD, Simon K. Warfield, PhD

Rationale and Objectives: Tuberous sclerosis complex (TSC) is a genetic neurocutaneous syndrome in which cognitive and social-behavioral outcomes for patients vary widely in an unpredictable manner. The cause of adverse neurologic outcome remains unclear. The aim of this study was to investigate the hypothesis that disordered white matter and abnormal neural connectivity are associated with adverse neurologic outcomes.

Materials and Methods: Structural and diffusion magnetic resonance imaging was carried out in 40 subjects with TSC (age range, 0.5–25 years; mean age, 7.2 years; median age, 5 years), 12 of whom had autism spectrum disorders (ASD), and in 29 age-matched controls. Tractography of the corpus callosum was used to define a three-dimensional volume of interest. Regional averages of four diffusion scalar parameters of the callosal projections were calculated for each subject. These were the average fractional anisotropy (AFA) and the average mean, radial, and axial diffusivity.

Results: Subjects with TSC had significantly lower AFA and higher average mean, radial, and axial diffusivity values compared to controls. Subjects with TSC and ASD had significantly lower AFA values compared to those without ASD and compared to controls. Subjects with TSC without ASD had similar AFA values compared to controls.

Conclusion: Diffusion tensor scalar parameters provided measures of properties of the three-dimensional callosal projections. In TSC, changes in these parameters may reflect microstructural changes in myelination, axonal integrity, or extracellular environment. Alterations in white matter microstructural properties were associated with TSC, and larger changes were associated with TSC and ASD, thus establishing a relationship between altered white matter microstructural integrity and brain function.

Key Words: Tuberous sclerosis complex; diffusion tensor imaging; corpus callosum; autism spectrum disorders; normal appearing white matter.

©AUR, 2012

Tuberous sclerosis complex (TSC) is a genetic neurocutaneous syndrome with an estimated incidence of one in 6000 to 10,000. Although some patients with TSC may never show neurologic symptoms affecting their quality of life, epilepsy occurs in 80% to 90% of all patients, close to 45% of patients have mild to profound intellectual disabilities, and autism spectrum disorders (ASD) occur in up to 50% of patients (1).

The cause of neurologic deficits in patients with TSC is a key unresolved question, and neurologic outcomes remain highly variable and unpredictable. It has been hypothesized that tubers disrupt local cerebral architecture, resulting in impaired brain function. However, no robust conventional magnetic resonance imaging (MRI) measure of tubers correlates consistently with the clinical phenotype or long-term neurologic outcomes (2), and neither a high tuber load nor tubers in specific locations are necessary or sufficient to predict seizures, cognitive impairment, or autism (3).

More recently, investigators have studied the hypothesis that disordered white matter and abnormal neural circuitry contribute to neurologic symptoms in patients with TSC.
Such a neural mechanism would underlie both intellectual impairment and autism and may be responsible for comorbid autism in other disorders as well (4). Support for the existence of aberrant neural circuitry can be found in TSC mouse models. The Tsc1 and Tsc2 proteins appear to be crucial for proper axon specification, guidance, and myelination (5–7). Neuron-specific Tsc1 knockout mice display diffuse cortical and subcortical hypomyelination (6). In Tsc2 heterozygous mice, investigators have found abnormally exuberant and disordered axonal projections from the retina to the lateral geniculate nucleus, suggesting defects in axon guidance (7).

Similarly, in human subjects with TSC, diffusion tensor imaging (DTI) analysis of white matter that appears normal on conventional MRI has identified abnormalities suggesting abnormal myelination and astrogliosis (8–11). Moreover, in large studies of children with idiopathic autism (autism with no known cause), DTI abnormalities of the corpus callosum have been identified (12,13).

We hypothesized that disruption of the normal development of brain function in patients with TSC is caused by alterations in the microstructural integrity of axons and myelination. Using DTI, we compared patients with TSC with healthy controls to further characterize abnormal white matter microstructure and aberrant connectivity in TSC. In addition, we hypothesized that an increase in loss of microstructural integrity in patients with TSC would lead to an increase in cognitive and social–behavioral deficits, specifically ASD. In this study, we focused on the corpus callosum, a major commissural long-distance pathway that has been well-studied in ASD as well as in TSC.

Finally, in this paper, we introduce a novel tractographic analysis method that considers all tractographic streamlines and adjusts for partial volume averaging in the calculation of DTI measures.

MATERIALS AND METHODS

Subjects

Forty patients (age range, 0.5–25 years) with established diagnoses of TSC and 29 age-matched control subjects were imaged using 3-T MRI. Control subjects underwent imaging as part of their routine care or as part of this research study. Each MRI study was reviewed by a pediatric neuroradiologist S.P.P., and all controls had normal MRI results and normal neurologic examination results. Controls did not undergo neuropsychological evaluation as part of this study. Recruitment of subjects and data acquisition were conducted using a protocol approved by the institutional review board of Children’s Hospital Boston.

All patients fulfilled the clinical criteria for definite TSC, as defined by the Tuberous Sclerosis Consensus Conference (14). All patients with TSC were neurologically examined, and clinical data were obtained during office visits and from review of medical records. ASD diagnoses were based on clinical assessment by a board-certified pediatric neurologist (M.S.), using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (15), and in all but the three oldest subjects supported by additional testing with the Autism Diagnostic Observation Schedule (16) by experienced behavioral specialists (S.J., V.K.V.-F.).

Data Acquisition and Analysis

The MRI protocol was based on routine clinical imaging, extended with diffusion imaging. Sedation was used only in subjects undergoing clinical imaging if necessary to prevent significant motion. The imaging protocol included a T1-weighted magnetization-prepare rapid-acquisition gradient-echo sequence and a T2-weighted turbo spin-echo sequence, with diffusion imaging (17) acquired in the axial plane, using 30 images with $b = 1000$ s/mm2 and five images with $b = 0$ s/mm2 (field of view, 22 cm; slice thickness, 2.0 mm; echo time, 88 ms; repetition time, 10 seconds; matrix size, 128×128; number of signals acquired, 1; iPAT = 2, modified as necessary to facilitate completion of the scan if the subject was unable to remain perfectly still).

A segmentation of the intracranial cavity was created from the structural magnetic resonance image (18,19). Compensation for residual distortion and patient motion was achieved by aligning the diffusion images to the T1-weighted magnetization-prepared rapid-acquisition gradient-echo scan, with appropriate reorientation of the gradient directions (20). Tensors were estimated using robust least squares and were displayed via color coding (21).

We used a stochastic streamline tractographic algorithm that combines the speed and efficacy of deterministic decision making at each voxel with probabilistic sampling from the space of all streamlines. Potential streamlines are stochastically initialized and evaluated, starting from a seeding region of interest (ROI), such as all the white matter in the brain. Streamlines are initialized at stochastically sampled locations inside the seeding ROI and are constructed by stepping with subvoxel resolution through the tensor field. For each potential streamline, we avoid loss of connectivity due to local aberrations by incorporating a low-pass filter along the estimated pathway for conventional stopping criteria, including streamline curvature and fractional anisotropy (FA) criteria. The range of potential streamlines examined is broad in comparison to conventional deterministic streamline tracing and is formed by log-Euclidean tensor interpolation (22) at each location, with stepping direction determined by a linear combination of tensor deflection (23) and primary eigenvector orientation, with stopping based on FA and angle criteria.

Specifically, from each stochastically selected subvoxel location p^k, a new point along the streamline is identified by stepping, with a fixed step size s, in the direction v^k, determined by the primary eigenvector of the tensor estimate at p^k:

$$p^{k+1} = p^k + v^k s$$
The new point \(p^{k+1} \) is tested to ensure that it is inside the image boundary and inside the region to be considered for tractography. A mask can be used to ensure that tractography does not step through regions with no white matter. Streamline generation is terminated if points are not validated. Streamline termination criteria related to the FA and angle changes are then checked.

The trajectory FA is assessed as a linear combination of the FA of the tensor estimate and the previous trajectory FA:

\[
F^{k+1} = aF^k + (1-a)FA(D^{k+1})
\]

where \(FA(D^{k+1}) \) is the FA of the tensor \(D^{k+1} \). The primary eigenvector of the tensor is computed, providing \(\epsilon^{k+1} \). The angle criterion is assessed by accumulating the cosine of trajectory angle changes, \(\theta \):

\[
\theta^{k+1} = \beta \theta^k + (1-\beta) \left(\sum_{j=1}^{3} \epsilon_{j}^{k+1} \right) \]

The new direction of the streamline is calculated using a combination of the primary eigenvector and tensor deflection, while accounting for the previous direction of the streamline:

\[
\nu^{k+1} \propto \nu^k + \alpha \left[(1-\gamma) \left(\delta \left(D^{k+1} \right)^{\nu^k} + (1-\delta) \epsilon^{k+1} \right) \right]
\]

Propagation of each streamline was terminated if the tract trajectory angle exceeded 30° or if the tract trajectory angle fell below 0.15 or if the tract trajectory angle changes were assessed by accumulating the cosine of trajectory angle changes, \(\theta \):

\[
\theta^{k+1} = \beta \theta^k + (1-\beta) \left(\sum_{j=1}^{3} \epsilon_{j}^{k+1} \right)
\]

Streamline termination criteria related to the FA and angle are then checked.

Propagation of each streamline was terminated if the tract trajectory angle exceeded 30° or if the tract trajectory angle fell below 0.15 or if the tract trajectory angle changes were assessed by accumulating the cosine of trajectory angle changes, \(\theta \):

\[
\theta^{k+1} = \beta \theta^k + (1-\beta) \left(\sum_{j=1}^{3} \epsilon_{j}^{k+1} \right)
\]

The corpus callosum ROI was located by inspection of the structural MRI scans and a color-coded image of local tensor orientation and delineated interactively (Fig 1a) using previously established criteria (24). The stochastic tractography was used to identify streamlines consistent with the projections of the corpus callosum, which are illustrated in Figure 1b. Scalar measures of FA, MD, axial diffusivity, and radial diffusivity were derived from each tensor. These measures reflect properties of the underlying white matter but do not have high specificity for particular microstructural white matter changes (28). The streamlines passing through the corpus callosum ROI were used to construct a streamline density image, constructed by counting the number of times each trajectory entered a voxel and dividing by the total number of trajectories created, as illustrated in Figures 1c and 1d. To characterize the microstructural properties of the white matter of these streamlines, streamline density–weighted averages of these scalar parameter values were calculated.

This provided four scalar variables characterizing the projections of the corpus callosum in each subject, the average FA (AFA), average MD (AMD), average axial diffusivity (AAD), and average radial diffusivity (ARD). The weighted average and variance of the FA (and similarly for the other scalar parameters) in the projections of the corpus callosum were computed as

\[
AFA = \frac{\sum_{i} d_i FA_i}{\sum_{i} d_i}, \quad \text{var}(AFA) = \frac{\sum_{i} d_i (FA_i - AFA)^2}{\sum_{i} d_i^2}
\]
where \(i \) is the index of each voxel, \(d_i \) is the streamline density at voxel \(i \), and \(\text{FA}_i \) is the FA.

Callosal volume was estimated by thresholding the streamline density image at 5% (29), counting the number of voxels, and multiplying by the size of each voxel.

Statistical Analysis

The DTI measures were treated as response variables in a regression model with age, gender, and group status. Visual plots of the data suggest that age needed to be log transformed. This transformation was later confirmed by assessment of the value of the Akaike information criterion for the models with age log transformed and the model with age untransformed. Group status was initially defined as patients with TSC or controls. We then refined group status into three groups: controls and patients with TSC with and without ASD. All two-way and three-way interactions were considered. Interaction and main effect terms were dropped on the basis of likelihood ratio tests so that we achieved a model that accurately described the response without extraneous terms. Group and log (age) were identified as important terms. Gender was not significant after including age and group (TSC vs controls or ASD vs no ASD) in the model. The presence of group difference was determined by a likelihood ratio test. Significance tests were corrected for multiple comparisons (30), with a nominal \(\alpha \) level of .05 and sequential model evaluation. Separate models were fit for each DTI measure. Models were validated through residual plots, Q-Q plots, and added-variable plots.

RESULTS

Patients

Forty subjects (24 male, 16 female; mean age, 7.2 years; age range, 0.5–25 years; median age, 5.0 years) underwent MRI. Only one patient had normal results on MRI. Twenty-four had clinically significant developmental delays or intellectual disabilities, and 12 had ASD (note that six patients aged < 1.5 years were not considered for formal diagnosis of ASD). Thirty patients had genetic confirmation of their clinical diagnoses with abnormalities in the Tsc1 (\(n = 8 \)) and Tsc2 (\(n = 22 \)) regions; in others, results were negative or testing was not performed (eg, in patients with family histories of TSC). Using Fisher’s exact test, the prevalence of ASD was not significantly different in patients with Tsc1 compared to Tsc2 mutations (\(P = .4634 \)), with or without global developmental delay or mental retardation (\(P = .2919 \)), and with or without family histories of TSC (\(P = .3891 \)). Subjects with epilepsy (\(n = 25 \)) and infantile spasms
Twenty-nine age-matched controls (14 female, 15 male; mean age, 7.7 years; age range, 0.9–25 years; median age, 6.48 years) with normal results on MRI were included.

Mean age, 7.7 years; age range, 0.9–25 years; median age, 21

DISCUSSION

Relation between White Matter Microstructure and the Development of Brain Function

Our study provides the first imaging data that identify an association between altered white matter microstructure and abnormal brain function in the TSC population. Moreover, a reduction in white matter integrity is seen in patients with worse neurodevelopmental outcomes (ie, in those who have ASD; Fig 3).

Several recent studies have reported DTI abnormalities in TSC of the normal-appearing white matter, indicating foci of microstructural abnormalities, depending on sample size and technique (8–11,31–34); summarized in Table 2. This body of data suggests that it is likely that microstructural changes are present throughout the cerebral white matter in TSC. Our study is consistent with previous literature and is the first to allow for phenotypical correlation because of its large sample size.

In TSC, several pathophysiologic substrates have been proposed for reduced FA and increased MD in the normal-appearing white matter. Changes in axonal integrity and diameter can affect axial diffusivity (35). RD values correlate with myelination in the normally developing mouse brain and in experimental demyelination (36). In our subjects, increased RD may represent disordered myelin sheaths but also axonal depletion or extracellular changes such as astroglisis and giant cells (9,10). Such changes, including abnormal neuronal organization and hypomyelination, have been shown in animal models of TSC (6). Finally, lower FA may relate to disorganized (37) and poorly myelinated (38) axons. Our findings are again in accordance with animal studies, where loss of Tsc1 or Tsc2 function has detrimental effects on regulation of axonal growth, particularly neuronal polarity and axon formation (5–7).

In idiopathic autism, the white matter appears normal on conventional imaging, but the theory of “developmental disconnection” has driven research efforts in the direction of investigating connectivity on the functional and microstructural levels. In this model, disconnection relates to
impaired corticocortical transfer of intrahemispheric and interhemispheric information, affecting the higher order processing of complex information. In patients with ASD, these processing difficulties have been found to be consistently deficient across multiple domains and across multiple modalities (12,39–41).

Within the white matter, the corpus callosum has been implicated in ASD in several lines of research, including imaging studies of callosal volume, white matter density, functional imaging of information transfer or resting state functional connectivity, and postmortem studies (12,41,42). The corpus callosum represents a major interhemispheric tract of highly coherent white matter fibers, making it especially suited for DTI to study its microstructural connectivity as a model for disconnection in autism (12), and indeed, white matter microstructural abnormalities have been identified with diffusion imaging in patients with idiopathic autism (43–45). Our DTI data confirm microstructural abnormalities of callosal white matter in patients with TSC and more prominently in the subjects with TSC with ASD, in support of the...
notion that abnormal white matter microstructure is related to impaired brain development and function. Our volume estimation data are in concordance with findings of decreased callosal volume in autism in multiple imaging studies, summarized by Anderson et al (42). In TSC, cortical malformations including tubers and neuronal migration defects affect white matter as migrational failure results in impaired neocortical development, which is followed by a deficiency in corticocortical fibers destined to be part of the corpus callosum (46,47). In a recent study of 12 patients with TSC, DTI indices of major commissural white matter also correlated with tuber load (11), suggesting more extensive malformation leading to both more tubers and decreased microstructural quality of the corpus callosum. We found significant correlations between DTI parameters and volume estimates of projections of the corpus callosum. In this interhemispheric pathway, both macrostructural and microstructural characteristics were abnormal in patients with TSC with ASD.

Streamline Density-Weighted Statistics

There are certain artifacts and pitfalls that must be taken into consideration with respect to diffusion imaging and tractography (52). Partial volume mixing and proximity of a pathway to other pathways containing many more tracts propagating in a different direction are some of the factors that introduce errors or even cause certain pathways to be missed completely. DTI tractography is consistent with known anatomy (24,49) and with the histologic appearance of fiber structure (50,51), but some fiber tracts are not identified, and spurious fiber tracts may be incorrectly detected.

Our use of streamline density weighting compensates for partial volume averaging of fiber tracts and treats each streamline in the same way. The alternative, of identifying a region on the basis of thresholding the streamline density and treating each voxel equally, fails to account for the different occupancy of voxels with many streamlines in comparison to voxels with few streamlines present. In this way, we compute the mean scalar parameter of each streamline of a structure rather than of each voxel. Thus, our use of streamline density–weighted statistics enables the analysis of the three-dimensional callosal projections while appropriately adjusting for changes in streamline density as well as spurious tracts. We propose that our calculation of streamline density–weighted averages of DTI scalar parameter values be used as a standard in the characterization of the microstructural properties of white matter fascicles.

CONCLUSIONS

Our novel method of streamline density–weighted calculation of mean DTI scalar parameters allows for the incorporation of
all white matter projections while compensating for volume
averaging, resulting in average DTI measures of a white matter
structure defined by tractography rather than by its voxels.
Using streamline density weighting, we found a relation
between alterations in white matter microstructure and
neurologic outcomes in TSC.

The finding of decreased AFA and increased AAD, AMD,
and ARD of the corpus callosum in the TSC population
compared to controls is a new finding consistent with the
previous work that has identified alterations in the white
matter of patients with TSC. These pathologic findings in
the corpus callosum by DTI are likely typical of alterations
throughout the cerebral white matter in TSC.

The significant difference of AFA between subjects with
TSC with and without ASD lends further support to the
current hypothesis of long-range functional and structural
disconnection in autism. Our finding of AFA differences raises
the possibility of using callosal AFA as an early biomarker to
predict ASD in the TSC population. Future longitudinal
studies of our younger patients will provide much-needed
insights in pathologic developmental changes occurring at
the critical periods in ASD (41).

ACKNOWLEDGMENTS

Thanks go to Sarah Spence, MD, PhD for critical reading of
the manuscript. We gratefully acknowledge the contribution of
MRI scans from John Gilmore and Martin Styner, sup-
ported by grant P50 MH064065 from the National Institutes
of Health. We are indebted to the children and families who
have participated in this study.

REFERENCES

2. Wong V. Study of the relationship between tuberous sclerosis complex

sclerosis complex is a multifactorial condition. Neurology 2008; 70:
916–923.

males and females with fragile X full mutation and premutation. J Autism

novel loss of Tsc1 causes dysplastic and ectopic neurons, reduced
myelination, seizure activity, and limited survival. J Neurosci 2007; 27:
5546–5558.

7. Nie D, Di Nardo A, Han JM, et al. Tsc2-Rheb signaling regulates Epha-

diffusion-weighted imaging of normal-appearing white matter in children
and young adults with tuberous sclerosis complex. Neuroradiology 2009;
51:781–786.

sivity in normal-appearing white matter investigated with diffusion tensor
MR imaging in tuberous sclerosis complex. AJNR Am J Neuroradiol

matter in tuberous sclerosis with tractography. Pediatr Neurol 2010; 42:
101–106.

sural and projection white matter in tuberous sclerosis complex and corre-

13. Keller TA, Kana RK, Just MA. A developmental study of the structural

conference: revised clinical diagnostic criteria. J Child Neurol 1998;
13:624–628.

15. American Psychiatric Association. Diagnostic and statistical manual of
Association; 2000.

schedule-generic: a standard measure of social and communication defi-
30:205–223.

17. Reese TG, Heid O, Weisskoff RM, et al. Reduction of eddy-current-
induced distortion in diffusion MRI using a twice-refocused spin echo.

medical image segmentation using prior information, IEEE Trans Med

19. Weisenfeld NI, Warfield SK. Automatic segmentation of newborn brain

and simple calculus on diffusion tensors. Magn Reson Med 2006; 56:
411–421.

 Inferior Frontal Gyrus anatomical connectivity in schizophrenia. Neuro-

27. Powell HW, Parker GJ, Alexander DC, et al. Hemispheric asymmetries in
language-related pathways: a combined functional MRI and tractography

28. Basser PJ, Pierpaoli C. Microstructural and physiological features of
tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B

29. Chung HW, Chou MC, Chen CY. Principles and limitations of computa-
tional algorithms in clinical diffusion tensor MR tractography. AJNR Am J

30. Ge Y, Sealoff SC, Speed TP. Some step-down procedures controlling the

identifies changes in normal-appearing white matter within the
epileptogenic zone in tuberous sclerosis complex. Epilepsia Res;

33. Peng SS, Lee WT, Wang YH, et al. Cerebral diffusion tensor imaging in chil-
ldren with tuberous sclerosis: a preliminary report. Pediatr Radiol 2004; 34:
387–392.

34. Luat AF, Makki M, Chugani HT. Neuroimaging in tuberous sclerosis complex.

35. Budde MD, Xie M, Cross AH, et al. Axial diffusivity is the primary corre-
cate with the spectrum of autism. J Autism Dev Disord 2000; 30:
11–19.

36. Song SK, Yoshino J, Le TO, et al. Demyelination increases radial diffusivity

37. Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in
white matter in tuberous sclerosis with tractography. Pediatr Neurol 2005;
28:2805–2813.

38. Gulani V, Webb AG, Duncan ID, et al. Apparent diffusion tensor measure-
ments in myelin-deficient rat spinal cords. Magn Reson Med 2001; 45:
191–195.